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Abstract 

This work is interested in finding the analytic solution of a time fractional enzymes kinetics 

model. Instead of using traditional method that requires perturbation, discretization or 

linearization, we used a method that is made up of the differential transformation method and 

Pade approximant called DTM-Pade. It is established that the proposed method avoids large 

computational work, is reliable and efficient when compared with fourth order Runge Kutta 

solution for enzyme kinetics model of   integer derivatives. 

 

1.0  Introduction 

Enzymes are organic catalysts produced by living organism. They are proteins made up of 

tens or hundreds of amino acids. Enzymes are central to every biochemical process, acting in 

organised sequences; they catalyse the hundreds of stepwise reactions that degrade nutrient 

molecules (Robert, 1977). 

The catalytic activities of enzymes depend on the sequence of amino acids in the chain and 

the functional groups present on the amino acids. Enzyme have a complex 3-D structure 

which is responsible for the high catalytic specificity, only substrates with a precise shape 

and size fit into the enzyme surface and bind with the functional groups at the active site of 

the enzyme (Fersht, 1990). 

The reactant in an enzyme-catalysed reaction is called the substrate. The active site of an 

enzyme is that small portion of the molecule which is responsible for the catalytic action of 

the enzyme. Enzymes provide a chemical pathway that has lower activation energy than the 

same reaction uncatalysed (Bugg, 2004). 

The study of enzymes has immense practical importance in some diseases especially 

inheritable genetic disorders; there may be a deficiency or even a total absence of one or 

more enzymes. For other disease conditions, excessive activity of an enzyme may be the 

cause. Measurements of activities of enzymes in blood plasma, or tissue samples are 

important in diagnosing certain illnesses. Many drugs exert their biological effects through 
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interactions with enzymes (Williams, 1975).  Thus, it is important to study enzymes kinetics 

which provides better understanding on the temporal behaviour of various reactants, 

conditions influencing reactant and rates of reactant (Murray, 1989).  

The Michaelis-Menten model is one of the simplest and best-known approaches to enzyme 

kinetics. It takes the form of an equation relating velocity to substrate concentration for a 

system where a substrate S binds reversibly to an enzyme E to form an enzyme-substrate 

complex ES, which then reacts irreversibly to generate the free enzyme E. (Briggs and 

Haldane, 1925). Several biochemical reaction models with integer derivatives are presented 

in Meena et al., 2009; Malik et al., 2014 (and other references cited there in). 

In recent times, several studies carried out in the area of mathematical modelling of physical 

phenomena involving nonlinear dynamics has continue to gained popularity and success by 

applying fractional calculus. This is due to the advantages it has over integer calculus in 

modelling, which include 

1. Reduction of errors from neglected parameters (Sofuoglu and Ozalp, 2014). 

2. Consideration of memory loss or after effect (Zeb, 2014) 

3. Greater degree of freedom (Alawneh, 2012) 

The purpose of this work is to study the effectiveness and reliability of DTM-PADE to solve 

the MichealisMenten biochemical model of fractional order.  

The rest of the paper is organized as follows. The basic idea of DTM-Pade Approximant is 

discussed in section 2. Application to a time fractional enzyme kinetics model is presented in 

section 3, while section 4 presents numerical simulation and discussion of results. Section 5 

concludes the paper.  

 

2.0 Basic Idea of DTM-Pade Approximant 

 A well-known semi analytic numerical method, suitable for solving linear and 

nonlinear differential equations, differential algebraic equations, integro- differential equation 

is the Differential Transformation Method (DTM) which was first proposed by Zhou (Peker 

et al., 2011; Akinboro et al., 2014; Adio, 2015). This method provides a highly accurate 

results or exact solution without linearization, discretization or perturbation. 

 

Table 1: Fundamental Operations of Differential Transformation Method 
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The use of polynomials to approximate truncated power series is common but not always 

advisable due to the singularities of polynomials which are caused by inadequate radius of 

convergence. Hence Pade approximants are extensively used to overcome these 

shortcomings. The Pade approximation of a function  f t  of order  /m n  is defined by 

(Vazquez-Leal et al., 2014; Mohamed and Torky, 2013) 

 
 

 0 1

1

...
/ 1

1 ...

m

m

nf t
n

a a t a t
m n

b t b t

  


  
 

Where we consider 0 1b  , the numerator and denominator have no common factors. It is 

important to note that the Pade approximant can be obtain with ease through the help of  the 

in-built utilities of symbolic computational software such as Maple, Matlab and Mathematica 

(Oturanc, 2009). Thus the procedure of the aforementioned method to solve fractional order 

differential equation is summarized as: 

1. Apply the differential transformation method to any given system of fractional order 

differential equations. 

2. Perform several desirable numbers of iterations (i.e. of p times) and get the solution in 

power series form, let say    
1p

n

n o

f t f n t




 . 

3. Replace the powers of the independent variable with another (that is t with x ) to have the 

power series solution as  
1 1p
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f x
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 of the new series solution obtained from step 3 

5. Substitute back the independent variable to finally have the solution in the powers of 

fractions 

 

3.0 Application to Time Fractional Enzyme Kinetics 

In this section, DTM-Pade technique is applied to solve an enzymekinetic model of nonlinear 

fractional derivatives. The model presented in Alawneh (2012), is governed by the following 

system of nonlinear fractional differential equation.  
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Subject to the following initial conditions 
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Where ,k  and   are dimensionless parameters.Here i
tD


 for all 1,2,3i   is the fractional 

derivatives in the Caputo sense, and i  is the parameter describing the order of fractional 

time derivatives with 0 1i   1,2,3i  .  For 1 2 3 1     , system (2)-(4) reduces to 

system of ordinary differential of (10a)-(10c) presented in Meena et al., 2010. Thus, system 

(1)-(3) is the generalized form of the system of equations in Meena et al., 2010. We refer 
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readers to Zeb et al., 2014 (and other references cited there in) for the details of basic idea 

and notation of fractional calculus.  

Applying the differential transformation method to (1)-(3) we have 
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The differential inverse transform of system (6)-(8) is gotten as 
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4.0 Numerical Simulation 
 In this section, several cases study was presented to show the reliability and validity 

of DTM-Pade Approximant approach to solve a time fractional enzyme kinetics model. To do 

this, we compare the proposed method with the fourth order Runge
_ 

Kutta method. 

For different values of dimensionless parameters, ,k  and   when 1 2 3 1     , figure 

1and 2 clearly depicts that the solution obtained by the proposed method and fourth order 

Runge
_ 

Kutta method are in excellent agreement. Thus DTM-Pade is very effective and 

accurate to obtain analytic solutions for an integer order enzyme kinetic model. 

 

 
Figure 1: Comparison of the solutions obtained by DTM-Pade (dotted line) and Runge-Kutta 

method (solid line) for the normalized concentrations of the substrate u , enzyme-substrate 

complex v , and product w for 0.5, 1, 0.6k    and 1 2 3 1     . 
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Figure 2: Comparison of the solutions obtained by DTM-Pade (dotted line) and Runge-Kutta 

method (solid line) for the normalized concentrations of the substrate u , enzyme-substrate 

complex v , and product w for 1, 2, 0.5k    and 1 2 3 1     . 

 

Figure 3-6 shows the effect of fractional derivatives on the concentrations of the substrate u , 

enzyme-substrate complex v , and product w  by fixing the value of the dimensionless 

parameters 0.5, 1, 0.6k     while varying the magnitude of the order of fractional 

derivatives. 

 
Figure 3: Profile of normalized concentrations of the substrate u , enzyme-substrate complex

v , and product w for 0.5, 1, 0.6k    and 1 2 3 0.98      (dotted line); 

1 2 3 1      (solid line). 
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Figure 4: Profile of normalized concentrations of the substrate u , enzyme-substrate complex

v , and product w for 0.5, 1, 0.6k    and 1 2 31, 0.95, 0.95      (dotted line); 

1 2 3 1      (solid line). 

 

 
Figure 5: Profile of normalized concentrations of the substrate u , enzyme-substrate complex

v , and product w for 0.5, 1, 0.6k    and 1 2 30.95, 1, 0.9      (dotted line); 

1 2 3 1      (solid line). 
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Figure 6: Profile of normalized concentrations of the substrateu , enzyme-substrate complex

v , and product w for 0.5, 1, 0.6k    and 1 2 30.9, 0.85, 0.95      (dotted line); 

1 2 3 1      (solid line). 

 

It is obvious to note that the concentration of the product w strictly increases from its initial 

value, the concentration of enzyme-substrate complex v increases at first and later decreases 

and concentration of the substrateu , gradually decreases. 

 

5.0 Conclusion 

In this paper, we were able to show that the proposed method is effective, powerful and 

accurate to solve a time fractional enzyme kinetics model. DTM-Pade works well for 

obtaining analytical solution not only for system of nonlinear differential equations with 

fractional derivatives but also for integers when compared with existing method(s). The 

direct application of this method requires no perturbation, linearization or discretization thus 

stressing the point that DTM-Pade should be applied for various nonlinear models.  
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